• If $X(n) \xleftarrow{ZT} X(z)$ with ROC R, then

$X^*(n) \leftarrow^{\text{ZT}} X^*(z)^* \text{ with ROC } R$

• This is known as the conjugation property of the z transform.

Version: 2016-01-25

• If $X_1(n) \xleftarrow{ZT} X_1(z)$ with ROC R_1 and $X_2(n) \xleftarrow{ZT} X_2(z)$ with ROC R_2 , then $X_1 * X_2(n) \xleftarrow{ZT} X_1(z) X_2(z)$ with ROC containing $R_1 \cap R_2$

- This is known that the convolution (or time-domain convolution) property of the z transform.
- The ROC always contains the intersection but can be larger than the intersection (if pole-zero cancellation occurs.(
- Convolution in the time domain becomes *multiplication* in the z domain.
- This can make dealing with ITI systems much easier in the z domain than in the time domain.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• If $X(n) \leftarrow X(z)$ with ROC R, then

$nx(n) \xleftarrow{}^{\text{T}} -z \frac{d}{dz} X(z) \quad \text{with ROC } R.$

• This is known as the z-domain differentiation property of the z transform.

Version: 2016-01-25

▲□▶▲□▶▲□▶▲□▶ ■ のへぐ

• If $x(n) \leftarrow X(z)$ with ROC R, then

 $X(n) - X(n-1) \leftarrow \stackrel{\text{ZT}}{\rightarrow} (1 - z^{-1}) X(z)$ for ROC containing $R \cap |z| > .0$

- This is known as the differencing property of the z transform. Differencing
- in the time domain becomes multiplication by $1 z^{-1}$ in the z domain. This can make dealing with difference equations much easier in the z
- domain than in the time domain.

▲□▶▲□▶▲□▶▲□▶▲□ ● のへの

• If
$$x(n) \xleftarrow{ZT} X(z)$$
 with ROC R , then

$$\sum_{k^{\infty}=1}^{n} x(k) \xleftarrow{ZT} \frac{z}{z_{1}-} X(z) \text{ for ROC containing } R \cap |z| > .1$$

• This is known as the accumulation property of the z transform.

Version: 2016-01-25

<ロ>

• For a sequence X with z transform X, if X is causal, then

$$X(0) = \lim_{z^{\infty} \to} X(z($$

• This result is known as the initial-value theorem.

Version: 2016-01-25

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• For a sequence X with z transform X, if X is causal and $\lim_{n\to\infty} x(n)$ exists, then

$$\lim_{n \to \infty} x(n) = \lim_{z \to 1} [(z-1)X(z[($$

• This result is known as the final-value theorem.

Version: 2016-01-25

◆□ ▶ < @ ▶ < @ ▶ < @ ▶ < @</p>

THIS SLIDE IS INTENTIONALLY LEFT BLANK.

Section 11.4

Determination of Inverse Z Transform

Version: 2016-01-25

<ロ><部</p>

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

• Recall that the inverse z transform X of X is given by

$$x(n) = \frac{1}{2\pi j} \int_{\Gamma}^{\Gamma} X(z) z^{n-1} dz,$$

where Γ is a counterclockwise closed circular contour centered at the origin and with radius Γ such that Γ is in the ROC of X.

- Unfortunately, the above contour integration can often be *quite tedious* to compute.
- Consequently, we do not usually compute the inverse z transform directly using the above equation.
- For rational functions, the inverse z transform can be more easily computed using *partial fraction expansions*.
- Using a partial fraction expansion, we can express a rational function as a sum of lower-order rational functions whose inverse z transforms can typically be found in tables.

<ロト < 団 > < 団 > < 豆 > < 豆 > < 亘

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Section 11.5

Z Transform and LTI Systems

Version: 2016-01-25

æ

 $\mathcal{O}\mathcal{Q}$

'문 ► < 문 ►

- Consider a ITI system with input X, output Y, and impulse response h, and let X, Y, and H denote the z transforms of X, Y, and h, respectively.
- Since y(n) = x * h(n), the system is characterized in the z domain by

$$Y(z) = X(z) H(z).$$

- As a matter of terminology, we refer to H as the system function (or transfer function) of the system (i.e., the system function is the z transform of the impulse response).
- When viewed in the z domain, a ITI system forms its output by multiplying its input with its system function.
- AITI system is completely characterized by its system function H.
- If the ROC of *H* includes the unit circle |z| = 1, then $H(z)|_{z=e^{i\Omega}}$ is the *frequency response* of the ITI system.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- Consider a ITI system with input X, output Y, and impulse response h, and let X, Y, and H denote the z transforms of X, Y, and h, respectively.
- Often, it is convenient to represent such a system in block diagram form in the z domain as shown below.

$$\begin{array}{c} X(\vec{z}) \\ \hline H(\vec{z}) \\ \end{array} \begin{array}{c} Y(\vec{z}) \\ \hline \end{array}$$

• Since a ITI system is completely characterized by its system function, we typically label the system with this quantity.

3

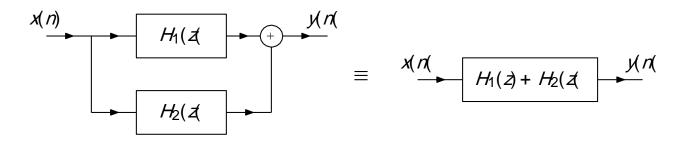
500

< ロ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• The series interconnection of the ITI systems with system functions H_1 and H_2 is the ITI system with system function $H = H_1 H_2$. That is, we have the equivalences shown below.

$$\begin{array}{c} x(n) \\ \hline H_{1}(z) \\ \hline H_{2}(z) \\ \hline H_$$

• The *parallel* interconnection of the ITI systems with impulse responses H_1 and H_2 is a ITI system with the system function $H = H_1 + H_2$. That is, we have the equivalence shown below.



æ

 $\mathcal{A} \subset \mathcal{A}$

- If a LTI system is *Causal*, its impulse response is causal, and therefore *right sided*. From this, we have the result below.
- **Theorem.** A ITI system is *causal* if and only if the ROC of the system function is the *exterior of a circle including infinity*.
- **Theorem.** A ITI system with a *rational* system function *H* is causal if and only if
 - 1) the ROC is the exterior of a circle *outside the outermost pole*, and with
 - H(z) expressed as a ratio of polynomials in z the order of the numerator polynomial does not exceed the order of the denominator polynomial.

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

 $\mathcal{A} \subset \mathcal{A}$