
Conjuga t ion 

If x(n) ←→ X (z) with ROC R, then 
 
 

x∗(n) ←→ X ∗(z ∗)  

ZT 

ZT 

with ROC R. 

This  is  known as  the  conjugation proper ty of the  z transform. 
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Convolution 

ZT ZT 

If x1(n) ←→ X1(z) with ROC R1 and x2(n) ←→ X2(z) with ROC R2, then 
 
 

ZT 

x1 ∗ x2(n) ←→ X1(z)X2(z) with ROC containing R1 ∩ R 2.  
 
 

This  is  known that the  convolution (or  time-domain convolution) 

proper ty of the  z transform. 
 

The ROC always  contains  the  intersection but can be  larger than the  

intersection (if pole-zero cancella tion occurs ).  

Convolution in the  time domain becomes multiplication in the  z domain. 

This  can make dealing with LTI sys tems much eas ier in the  z domain than 

in the  time domain. 
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Z-Domain Diffe rentia t ion 

If x(n) ←→ X (z) with ROC R, then 
ZT 

nx(n) ←→ −z d X (z) ZT 

dz with ROC R. 

This  is  known as  the  z-domain differentiation proper ty of the  z 

transform. 
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Diffe rencing 

If x(n) ←→ X (z) with ROC R, then 
ZT 

x(n) − x(n − 1) ←→ (1 − z−1)X (z) for ROC containing R ∩ |z| >  0.  
ZT 

This  is  known as  the  differencing proper ty of the  z transform. Differencing 

in the  time domain becomes multiplication by 1 − z−1 in the  z domain. 
 

This  can make dealing with difference  equations  much eas ier in the  z 

domain than in the  time domain. 
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Accumula t ion 

If x(n) ←→ X (z) with ROC R, then 
ZT 

n 

∑ 
k =−∞  

x(k) ←→ 
z 

ZT z X (z) for ROC containing R ∩ |z| >  1.  
− 1  

This  is  known as  the  accumulation proper ty of the  z transform. 
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Initia l Va lue  Theorem 

For a  sequence  x with z transform X , if x is  causal, then 
 
 

x(0) =  lim X (z ).  
z →∞  

 

 

This  result is  known as  the  initial-value theorem. 
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Fina l Va lue  Theorem 

For a  sequence  x with z transform X , if x is  causal and limn→∞ x(n) exis ts , 

then 

lim x(n) =  lim[(z − 1)X (z )].  
n→∞ z→1 

This  result is  known as  the  final-value theorem. 
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More  Z Trans form Examples  

THIS  S LIDE  IS   INTENTIONALLY  LEFT  

BLANK. 
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Section 11.4 
 

 
 
 

Determination of Invers e  Z Trans form 
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Finding the  Inverse  Z Trans form 
Recall that the  inverse  z transform x of X is  given by 

x(n) =  1 
2π j 

f  
 

 
 

Γ 
X (z)zn−1dz, 

where  Γ is  a  counterclockwise  closed circular contour centered at the  

origin and with radius  r such that Γ is  in the  ROC of X . 

Unfortunately, the  above contour integration can often be  quite tedious to 

compute. 
 

Consequently, we do not usually compute  the  inverse  z transform directly 

us ing the  above equation. 
 

For ra tional functions, the  inverse  z transform can be  more  eas ily 

computed us ing partial fraction expansions. 
 

Using a  partia l fraction expansion, we can express  a  ra tional function as  a  

sum of lower-order ra tional functions  whose  inverse  z transforms can 

typically be  found in tables. 

Version: 2016-01-25 



Section 11.5 
 

 
 
 

Z Trans form and LTI Sys tems  
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Sys tem Function of LTI Sys tems  

Consider a  LTI sys tem with input x, output y, and impulse  response  h, and le t 

X , Y , and H denote  the  z transforms of x, y, and h, respectively. 
 

Since  y(n) =  x ∗ h(n), the  sys tem is  characterized in the  z domain by 
 
 

Y (z) =  X (z)H(z). 
 
 

As a  matter of terminology, we refer to H as  the  system function (or 

transfer  function) of the  sys tem (i.e., the  sys tem function is  the  z 

transform of the  impulse  response). 
 

When viewed in the  z domain, a  LTI sys tem forms its  output by multiplying its  

input with its  sys tem function. 
 

A LTI sys tem is  completely characterized by its  sys tem function H . 

If the  ROC of H includes  the  unit circle  |z| =  1, then H(z)|z= e jΩ 

frequency response of the  LTI sys tem. 

is  the  
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Block Diagram Representa t ion of LTI Sys tems  

Consider a  LTI sys tem with input x, output y, and impulse  response  h, and le t 

X , Y , and H denote  the  z transforms of x, y, and h, respectively. 
 

Often, it is  convenient to represent such a  sys tem in block diagram form in 

the  z domain as  shown below. 
 

 

X (z) Y (z) 
H(z) 

 

 
 
 

Since  a  LTI sys tem is  completely characterized by its  sys tem function, we 

typically label the  sys tem with this  quantity. 
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Inte rconnection of LTI Sys tems  
The series interconnection of the  LTI sys tems with sys tem functions  H1 

and H2 is  the  LTI sys tem with sys tem function H =  H1H2. That is , we 

have  the  equivalences  shown below. 

H1(z) H2(z) ≡ 
x(n) y(n) x(n) y(n) 

H1(z)H2(z) 

≡ H1(z) H2(z) H2(z) H1(z) 
y(n) x(n) y(n) x(n) 

The parallel interconnection of the  LTI sys tems with impulse  responses  H1 

and H2 is  a  LTI sys tem with the  sys tem function H =  H1 +  H2. That is , we 

have  the  equivalence  shown below. 

H1(z) 

H2(z) 

≡ H1(z) +  H2(z) 
y(n) x(n) 

+ 

x(n) y(n) 
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Causa lity 

If a  LTI sys tem is  causal, its  impulse  response  is  causal, and therefore  

right sided. From this, we have  the  result below. 
 

Theorem. A LTI sys tem is  causal if and only if the  ROC of the  sys tem 

function is  the  exterior of a circle including infinity. 

Theorem. A LTI sys tem with a  rational sys tem function H is  causal if and 

only if 

1 the  ROC is  the  exte rior of a  circle  outside the outermost pole; and with 

H(z) expressed a s  a  ra tio of polynomia ls  in z the  orde r of the  

numera tor polynomia l does not exceed the  orde r of the  denomina tor 

polynomia l. 

2 
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